oS

http://www.diva-portal.org

This is the published version of a paper presented at 11th Swedish National Computer Networking
Workshop (SNCNW 2015) Karlstad, May 28-29, 2015.

Citation for the original published paper:

Jacobsson, M., Orfanidis, C. (2015)

Using software-defined networking principles for wireless sensor networks.

In: Proc. 11th Swedish National Computer Networking Workshop
N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-254172

Using Software-defined Networking Principles for
Wireless Sensor Networks

Martin Jacobsson and Charalampos Orfanidis
Uppsala University
Department of Information Technology
Email: {martin.j acobsson, charalampos.orfanidis } @it.uu.se

Abstract—In this paper, we propose an architecture based on
software-defined networking (SDN) for wireless sensor networks.
Ideas of how to design and make use of the flexibility that
SDN offers are presented. We discuss how SDN principles can
lead to the use of commodity hardware in a wider range of
WSN deployments and then tailor the software only to meet the
requirements of the specific deployments and their applications.
A few examples are introduced that demonstrate how the
architecture can be used for networking, in-network processing,
and performance predictions.

I. INTRODUCTION

More and more physical objects are becoming smart and
connected using ICT. A key concept for this is wireless sensor
networks (WSN), which connects smart objects with each
other in a local area using low power wireless communi-
cations. WSN is an important building block for the future
Internet of Things (IoT) vision.

WSNs may be used for many different types of applications
and in many different types of environments, such as in
residential homes, apartment buildings, large office buildings,
industrial plants, outdoor in urban environments as well as
rural areas. Applications may be delay-tolerant collection of
sensor readings, responsive smart home applications, tracking
of mobile objects or persons, and time- and mission-critical
operation of industrial plants, to name a few.

For the IoT vision to become true, it is important to keep
the costs low and this is mainly achieved through economy
of scale in both hardware and software. This means both
standardized hardware and software. At the same time, appli-
cation requirements may force us to tailor every single WSN
deployment individually and this can only be achieved by a
high degree of reconfiguration capabilities, something that can
be realised by using concepts and ideas from software-defined
networking (SDN) [1].

The developments in hardware have made reconfiguration
possible. The TelosB WSN node platform [2], which is the
most commonly used experimention platform in the research
community, is now 10 years old. Today, for example, ARM
and its partners have released new energy-efficient micro-
controllers, such as the ARM Cortex M-series, which are suit-
able for WSN nodes. Some of these have a 32-bit architecture
and much more program and code memory as well as faster
processing capabilities than TelosB. Also the wireless chips
have been updated. All this enables much more functions in
software.

This extra functionality enables a much higher degree of
tailoring, but also more advanced in-network processing. The
latter also provides shorter communication paths between
sensors, actuators, and the data processing. This also leads
to more robustness due to less dependence on far away nodes,
as well as lower delays and less energy consumption due to
the minimized communication paths.

In this paper, we discuss how SDN concepts can lead to the
use of commodity hardware in a wider range of IoT and WSN
applications and then tailor-making using software to meet the
requirements of the specific deployments.

The remainder of this paper is organised as follows. Sec-
tion II introduces the SDN-based architecture for WSNs.
In Section III, we discuss the networking aspects of the
architecture, while in Section IV, we give some example
SDN applications. Section V contains the related work and
Section VI concludes the paper.

II. AN SDN ARCHITECTURE FOR WSN

SDN is a concept developed to meet the demands of
more flexibility in the networking implementations on Internet
routers. In SDN, there is a decoupling defined between the
control plane and the data plane with OpenFlow [3] being the
currently most successful standard. New network control and
management solutions can easily be deployed by replacing the
control plane functionality.

OpenFlow is based on TCP, which means that the control
function could run locally on the router or somewhere else,
such as at a central server. Through the interface, the controller
application can configure the forwarding tables of the router
(or network switch). The task of the controller is to provide
a coherent image of the entire network and provide it as
one single entity towards the SDN applications. Typical SDN
applications could be routing, but also other functions, such as
access control and software-based traffic analysis, are possible.

The aim of this paper is to propose a flexible architecture for
WSN and IoT systems based on ideas from SDN and where
in-network processing is a natural part. We have to mention
that an SDN architecture for WSNs includes challenges. The
WSNs have constrained resources and most of the times are
battery operated, which means that the available energy should
be managed efficiently. One of the basic functions in a SDN
architecture is the communication between the control and
data plane and an increase in the communication will increase

Back-End Server or Gateway SDN Layers
Topology R . . Application
Control Optimization | | Simulation Specification Application Layer
Central
ntroll
Controller Control Layer
.4 hJ
. Local [T["""" Local Local
Controller Controller Controller Infrastructure Layer
WSN Node WSN Node WSN Node

Fig. 1. Overall SDN architecture for a WSN

the energy consumption. Hence, the energy efficiency is one
factor that should be considered during the design of a WSN
architecture based on SDN.

Figure 1 shows the overall architecture of our proposal with
the SDN layers indicated. Each WSN node is equipped with a
local controller, whose functionality can be as simple as just
receiving and executing the commands from the central con-
troller. The central controller communicates over the network
with either the used routing protocol if it is running or simple
networking principles, such as network-wide flooding [4]. On
top of this, message formats between the controller and the
WSN nodes must be defined.

On top of the central controller, there are one or more SDN
applications. These applications can be related purely to the
networking of the WSN, such as topology control and routing.
In this architecture, some SDN applications may be directed
towards the network operator staff with a user interface, while
others are completely automated. SDN applications may use
optimization solvers, simulators, specifically made algorithms,
or a combination.

Figure 2 shows the functionality on the WSN Nodes. Ev-
erything, except potentially some parts of the local controller
resides in the infrastructure layer. The main task of the local
controller is to setup, reconfigure, and monitor the parts of the
software that can be reconfigured. It can do so in two ways.
Either it changes parameters in the different functions, such as
the central frequency of the radio, the retransmission limit in
the MAC layer, modifying entries in the forwarding table, etc.,
or it installs new code in the different functions that changes
the behavior. The latter can be done by virtual machines (VM),
but can also be done with native code and dynamically linked
library functions. In this way, not only routing and MAC can
be modified by the controller, but there is also flexibility for
the neighbour and topology discovery functionality as well as
other functions.

In-network processing of sensor data is important for the
robustness of applications, energy-efficiency, and the reduction
of the delay. An application execution environment is defined
that allows application code to be updated over the air that
can process sensor data as it is being forwarded by the nodes.
For instance, the ProFuN TaskGraph Tool [5] can be used.

With a good code execution environment in place on

SW
‘ VM1 ‘ ‘ VM2 || VM.. ’44 @
Application
Execution Environment
(5]
TS
‘ VM ’4» §§
. . o
Routing & Forwarding
3 ‘ VM ’H
o
kS
o
] HW
<] MAC
z
pd Reconfigurable
2 PHY

Fig. 2. The architecture of the WSN node with SDN support

the WSN nodes, it also becomes possible to distribute the
controller function. Le., it is no longer required to run the
controller on a central node. Furthermore, hybrid controller
versions can be defined.

In homogenous networks, native binaries and dynamic link-
ing can be used, while massively heterogenous networks may
benefit from using byte code and VM technology designed
for embedded systems. Contiki OS has good support for
dynamic loading as well as over the air programming, which
can be used if all run the same software and micro-controller
architecture. If various hardware and software systems exist
in the same network, VMs may be a better choice. Some
researchers have proposed to put a virtual machine (VM) on
WSN nodes. In this way, one single byte code binary can
be distributed and executed on any node. Examples of VMs
developed for WSN nodes include EmbedVM, TakaTuka [6],
and Darjeeling [7]. The latter two are Java VMs. A third
option is using something similar to the command chains of
snapMac [8], i.e., a domain-specific VM-like engine with a
small set of pre-defined commands that can be executed by
a very simple byte code interpreter. A fourth option is to use
very simple scripting languages. Whatever choice is made, it
is also important to have a good run-time monitoring system
that, for instance, can deal with application processes running
out of hand or debugging. VMs and scripting languages may
be better in offering that functionality.

III. RECONFIGURABLE NETWORKING

With SDN, we have the option to centralize all or some parts
of the networking at a more powerful node. For robustness
reasons, we may not centralize everything. Instead, MAC,
forwarding, and many routing decisions are still likely to be
carried out by the individual nodes. However, long-term deci-
sions can be taken by a centralized controller, such as which
protocol and what parameters to use. A central controller may
also have good knowledge about application requirements,
which can be taken into account as well.

The central controller needs to discover the actual topology

and the quality of the links. This can be done either by
packet trace information or simpler link quality estimation
(LQE) for the links of the network. What is best depends
on how it is supposed to be used. Hence, even this part
should be reconfigurable. Only when data is needed by an
SDN application, the collection of data should be started, since
every extra data collection will reduce the network life-time.

A packet trace contains detailed information over how
packet losses over a link behaves. This information can be used
in a simulator (e.g., [9]) with a technique known as trace-based
simulation. The simulator can be used to answer questions,
such as which protocol is best or which parameters should
be selected. The good thing is that the accuracy between the
simulator and the deployment will be very good since the trace
is collected from the network under study.

While trace-based simulations can offer very good accuracy,
trace data is expensive to collect. Hence, more light-weight
alternatives are needed. LQE [10] is used to predict a link’s
quality for various reasons, such as transmission power con-
trol, rate adaptation, and routing. Many such techniques have
been proposed [10] and in general they are designed to be
light-weight. The collection of LQE for all links and thereby
also the network topology has been discussed by a handful of
papers, such as [11]-[13].

To gather LQE information from all links in the network
and model this for use by the SDN applications is not a trivial
problem. There are many aspects that need to be looked at and
that have implications on the overall performance. Questions
to be answered includes: What data to collect and how? Packet
reception ratio (PRR), received signal strength (RSS), signal-
to-noise ratio (SNR), noise level, chip/bit error rate, etc. How
often to sample and collect topology information? How much
energy do we consume by doing these measurements? Do we
gain by doing it? What happens to the energy efficiency by
introducing all this extra overhead?

Many of the answers depend on how the data is being used.
The LQE method may also have to take into account different
packet sizes, transmission powers, and data rates, depending
on the underlying wireless technology being used. We need
to define light-weight mechanisms for collecting topology
information that is still useful. Since this functionality also
has to evolve, we need this collection mechanism to also be
replaceable. By updating the code, what is collected, how it
is processed, and when it is communicated can be changed to
meet future requirements.

IV. FURTHER SDN APPLICATIONS

When the topology and link information has been collected,
it can be used for various reasons. Here, we apply this
information in four more ways.

A. Centralized Networking

If LQE or packet trace information is available at the con-
troller, we can use it for routing or tuning routing parameters.
In [13], one approach is attempted for centralized routing. The
tuning of parameters based on information about the network

has been shown by [8], [11]. In general, simulation or opti-
mization solvers may be used to find the right configuration.
The new thing here is that we can also take application needs
into account in this process.

B. Optimal code deployment

Depending on the topology, where a piece of code is
executed may have importance on the network life-time and
robustness. If the processing of sensor data is done on one of
the intermediate nodes, data does not need to make a detour
to be processed. Good data about the network can be used
together with a solver to find the optimal assignment [5], [14].

C. Predicting a WSN networks behavior and performance

Given the topology information, the used protocols, the
application behavior, and everything else, it becomes possible
to simulate the actual network at hand and predict its behavior
and performance. For instance, what is the actual network life-
time likely to be and what protocol is best for this particular
network and application? Robustness analysis can also be done
by simulating link or node outages. A system could also be
envisioned that goes one step longer and suggests the network
operator to make alterations to the node deployment, such as
move or add nodes, use of other antennas, etc.

D. Network life-time prediction

Using good energy consumption models [15] together with
collected network data, such as radio propagation information
and battery levels, better predictions of the network life-time
can be achieved. For the overhearing and collisions, it may also
be necessary to collect interference information. Interference
can be collected by the WSN nodes in a similar fashion to
JamLab [16].

V. RELATED WORK

Early on in the WSN research, it has been noted that
some MAC protocols work better in some scenarios and
other protocols in other scenarios. Hence, reconfigurable or
adaptive MAC platform have been proposed. T-MAC [17]
is one such early protocol where the listening period is
adaptive. C-MAC [18] is a much more recent protocol where
many parameters can be reconfigured by the applications.
In pTunes [11], the authors treat the parameters of a MAC
protocol as an optimization problem. They collect data from
the network at the base station where a solver is used to
find the optimal parameter configuration. The network is then
reconfigured accordingly. With snapMac [8], it is possible
to program the radio layer with a sequence (called chain)
of simple commands. The idea is similar to a VM with an
extensible set of very low-level instructions.

IMPERIA [13] is a centralized architecture for WSNs with
data gathering applications. It defines MAC, routing, and
management protocols. Its main idea is to move functionality
from the simple WSN nodes to the sink (i.e., the controller
functionality) in a similar way to a SDN. However, the
flexibility of the SDN concept is not at all studied.

Using SDN in WSNs has been proposed before. Mahmud
et al. [19] propose to deploy OpenFlow in WSNs, but the
contributions are limited. The same holds for Luo et al. [20]. In
[12], Costanzo et al. propose an architecture for a SDN-based
WSN where forwarding tables and in-network aggregation
of sensor data can be configured. A method for collecting
topology information and configuration packets are proposed.

Software-defined radio (SDR) is another related area where
radio hardware is replaced with software or reprogrammable
hardware (e.g., FPGA) for increased flexibility. The required
intensive signal processing is very energy costly [21] and
might not be an option for WSN nodes in the foreseeable
future.

VI. CONCLUSIONS

In this paper, we have proposed a SDN-based architec-
ture for flexible reconfiguration of WSN networking and
in-network processing functionality. SDN is an important
building block for being able to use standardised low-cost
off-the-shelf hardware and yet achieve customization suitable
to the individual deployments. We have discussed how the
architecture can be used for different purposes, including
networking, in-network processing, and WSN management
tasks.

An important step in validating the architecture is to im-
plement a prototype version of it. In the future, we aim
to make such a prototype and demonstrate its flexibility by
implementing multiple controllers and SDN applications on
common WSN hardware for different types of applications,
such as data collection applications as well as sense-compute-
act type of applications. An interesting research question to be
addressed in the future is also the investigation of the trade-off
between increased SDN functionality and energy efficiency.

ACKNOWLEDGMENTS

This research is partly sponsored by the Swedish Foundation
for Strategic Research (SSF) under research grant RIT08-0065
for the project ProFuN: A Programming Platform for Future
Wireless Sensor Networks.

REFERENCES

[1] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future
of programmable networks,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 3, pp. 1617-1634, Third 2014.

[2] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in the Fourth International Symposium on
Information Processing in Sensor Networks (IPSN’05), Los Angeles
(CA), USA, Apr. 15, 2005.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69-74, Mar. 2008.

[4] M. Jacobsson, C. Guo, and I. G. Niemegeers, “A flooding protocol
for manets with self-pruning and priorited retransmissions,” in the
International Workshop on Localized Communication and Topology
Protocols for Ad hoc Networks (LOCAN’05), Washington DC, USA,,
Nov. 7-10, Nov. 7-10, 2005.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

A. Elsts, F. H. Bijarbooneh, M. Jacobsson, and K. Sagonas, “Demo
abstract: ProFuN TG: A tool using abstract task graphs to facilitate the
development, deployment and maintenance of wireless sensor network
applications,” in the 12th European Conference on Wireless Sensor
Networks (EWSN’15), Porto, Portugal, Feb. 9-11, 2015.

F. Aslam, C. Schindelhauer, G. Ernst, D. Spyra, J. Meyer, and M. Zal-
loom, “Introducing TakaTuka: a java virtualmachine for motes,” in the
6th ACM conference on Embedded network sensor systems (SenSys’08),
Raleigh (NC), USA, Nov. 5-7, 2008.

N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a feature-rich
VM for the resource poor,” in the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys’09), Berkeley (CA), USA, Nov. 4-6,
2009.

P. D. Mil, B. Jooris, L. Tytgat, J. Hoebeke, I. Moerman, and P. De-
meester, “snapMac: A generic MAC/PHY architecture enabling flexible
MAC design,” Ad Hoc Networking, vol. 17, pp. 37-59, Jun. 2014.

A. Marchiori, L. Guo, J. Thomas, and Q. Han, “Realistic performance
analysis of wsn protocols through trace based simulation,” in the 7th
ACM workshop on Performance evaluation of wireless ad hoc, sensor,
and ubiquitous networks (PE-WASUN’10), Bodrum, Turkey, Oct. 17-21,
Oct. 17-21, 2010.

N. Baccour, A. Koubaa, L. Mottola, M. A. Zifiiga, H. Youssef, C. A.
Boano, and M. Alves, “Radio link quality estimation in wireless sensor
networks: A survey,” ACM Trans. Sen. Netw., vol. 8, no. 4, pp. 34:1-
34:33, Sep. 2012.

M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “pTunes:
Runtime parameter adaptation for low-power MAC protocols,” in the
11th International Conference on Information Processing in Sensor
Networks (IPSN’12), Beijing, China, Apr. 16-19, 2012.

S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
defined wireless networks: Unbridling SDNs,” in the 2012 European
Workshop on Software Defined Networking (EWSDN’12), Darmstadt,
Germany, Oct. 2012.

U. Hunkeler, C. Lombriser, H. Truong, and B. Weiss, “A case for cen-
trally controlled wireless sensor networks,” Elsevier Computer Networks,
vol. 57, no. 6, pp. 1425-1442, Apr. 2013.

F. H. Bijarbooneh and M. Jacobsson, “Macroprogramming of wireless
sensor networks using task graphs and constraint solving,” in the
8th Swedish National Computer Networking Workshop (SNCNW’12),
Stockholm, Sweden, Jun. 7-8, 2012.

J. Vazifehdan, R. V. Prasad, M. Jacobsson, and I. G. Niemegeers, “An
analytical energy consumption model for packet transfer over wireless
links,” Communications Letters, IEEE, vol. 16, no. 1, pp. 30-33, Jan.
2012.

C. Boano, T. Voigt, C. Noda, K. Romer, and M. Ziiiga, “JamLab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in the 10th ACM/IEEE Intl. Conf. on Information Process-
ing in Sensor Networks (IPSN’11), Chicago (IL), USA, Apr. 1214, 2011.
K. L. T. Dam, “An adaptive energy-efficient mac protocol for wireless
sensor networks,” in the Ist International Conference on Embedded
Networked Sensor Systems (SenSys’03), Los Angeles (CA), USA, Nov.
5-7, 2003.

A. E R. Steiner, T. Miick, “C-MAC: A configurable medium access
control protocol for sensor networks,” in /[EEE Sensors, Kona (HI), USA,
Nov. 1-4, 2010.

A. Mahmud, R. Rahmani, and T. Kanter, “eployment of flow-sensors in
internet of things virtualization via OpenFlow,” in the 3rd FTRA Inter-
national Conference on Mobile, Ubiquitous, and Intelligent Computing
(MUSIC’12), Vancouver, Canada, Jun. 26-18, 2012.

T. Luo, H.-P. Tan, and T. Quek, “Sensor OpenFlow: Enabling software-
defined wireless sensor networks,” IEEE Communications Letters,
vol. 16, no. 11, 2012.

S. Szilvasi, B. Babjdk, P. Volgyesi, and A. Lédeczi, “Marmote SDR:
Experimental platform for low-power wireless protocol stack research,”
Journal of Sensor and Actuator Networks, vol. 2, no. 3, pp. 631-652,
2013.

